How To Choose CD/DVD Archival Media

(Last updated January 11th 2013)

Translations: Serbo-Croatian by Jovana Milutinovich

Ahh, I’ve been planning to write this one for awhile: an entire article on archival quality media. As I do professional software development as well as professional photography (what a weird combination), I need archival quality CD and DVD media to store my data on.

However, one of the hardest things to is actually find good media, or even understand why it is good media. This article focuses on the history of Compact Discs, writable CD/DVD media, and why DVD+R is superior to DVD-R. If you want to just know what media is worth buying, skip to the summary at the bottom.

Short history of the Compact Disc
The invention of the Compact Disc has had a large impact on both music and computing in the last 20 years. Invented in 1979 as a joint project between Sony and Philips to counter the self-destructive nature of consumer audio playback (such as tapes and records that could only be played so many times before the recording degraded significantly) by switching to a resilient digital format.

The CD was also designed to store standard computer data, as in 1985 the first CD drives for computers were released; massive, bulky, and expensive, it was not until the mid-90s that they really took off, driven almost solely by video games and large multimedia applications.

In 1990, Sony and Philips went back to the drawing table, and then came out with the CD-R, a record-once medium. Yet again, the first CD burners were large, expensive, and bulky, but by the late 90s having a CD burner was the new ‘in’.

The first few generations of CD media, designed by Taiyo Yuden (a company who I respect, and buy all my archival quality media from), actually kind of sucked; it wasn’t until around 2000 that companies started producing very high end media.

CDs and DVDs store individual bits (encoded in various ways depending on the media) with spots of reflective and non-reflective areas. This method is called ‘pits and lands’, where pits ‘absorb’ light (ie, are ‘off’ bits) and lands ‘reflect’ light (ie, are ‘on’ bits).

With pressed media, the pressing method causes pits to reflect the laser’s light away from the sensor, and the lands to reflect it back at the sensor. With burned media, a high energy laser causes spots of organic dye to go opaque and obscure the reflective surface for the pits, leaving the organic dye for lands alone.

Short history of the DVD
While burning was becoming popular in the late 90s, so was playing high quality video on DVDs. Storing almost 7 times the data of a 700MB CD (or almost 13 in the case of dual layer DVDs), allowed companies to store massive amounts of data on one disc, leading to the movie industry to drop VHS tapes and the video game industry to drop CDs.

In 1995, the first DVD specification was ratified by over a dozen companies including Sony and Philips, as well as Thompson, Pioneer, and Mitsubishi. By 2000, at least half the homes in the US and Japan had DVD players.

So, obviously, the next step was to produce burnable DVDs. Two separate, and incompatible, efforts took hold. The first one, Pioneer’s DVD-R (pronounced ‘DVD dash R’) was released in 1997, using different data storage methods than pressed DVDs (appearing to be more like CD-R than DVD), a poor error correction scheme, and the ‘wobble’ laser tracking system of DVD-R is inadequate for the job.

The second effort, lead by the DVD+RW Alliance (headed by Sony, Philips, Mitsubishi, and Thompson) was released in 2002, as an alternative to the poorly implemented DVD-R. DVD+R uses a superior ‘wobble’ laser tracking system, a far better error correction method, and the media quality itself is typically higher. (See the ‘Why DVD+R?’ section below for a more technical explanation)

Why archival media is hard to produce
Unlike pressed CDs/DVDs, ‘burnt’ CDs/DVDs can eventually ‘fade’, due to five things that effect the quality of CD media: Sealing method, reflective layer, organic dye makeup, where it was manufactured, and your storage practices (please keep all media out of direct sunlight, in a nice cool dry dark place, in acid-free plastic containers; this will triple the lifetime of any media).

The silver and aluminum alloys used in virtually all blank CD/DVD media has one major issue, requiring the manufacturer to lacquer a protective seal over the entire disc: silver and aluminum oxidize when they hit air, turning the normally reflective layer into silver or aluminum rust. Some (very expensive) media uses gold instead which doesn’t oxidize, however DVD media cannot use gold due to design issues (not true anymore, see update 1 below). Today, only the cheapest of the cheap media has severe issues with sealing practices (as such, avoid any media made outside of Japan and Taiwan; especially avoid media made in India).

Assuming that the protective seal and reflective layer are manufactured correctly, the next issue is the organic dye. The first organic dyes, designed by Taiyo Yuden, were Cyanine-based and, under normal conditions, had a shelf life of around ten years; simply, that was simply unacceptable for archive discs. Taiyo Yuden, Mitsubishi Chemicals, Mitsui Co., and Ciba Specialty Chemicals spent the next ten years trying to produce the best organic dyes, eventually reaching archive-quality CD media.

Taiyo Yuden produced ‘Super Cyanine’, a chemically stabilized version of the original Cyanine dye designs, while TDK offers media that uses ‘metal-stabilized Cyanine’ dye, leading to similar shelf lives as Taiyo Yuden’s media. Taiyo Yuden states their Super Cyanine dye is chemically stable for at least 70 years, and TDK states their metal-stabilized Cyanine is also stable for 70 years.

On the other hand, Mitsubishi went in a different direction and produced what is called a Metal Azo dye, that they claim is stable for around 100 years. Azo dyes are chemically stable, however, the shelf life of media using Azo dyes typically does not exceed that of Super Cyanine and metal-stabilized Cyanine.

The third dye produced for CD media is called Phthalocyanine dye, with the majority of such dyes produced by Mitsui and Ciba. Typically marketed as more resistant to heat and UV radiation than Cyanine and Azo, modern Cyanine and Azo dyes last just as long in extreme conditions.

DVDs also use similar dyes, however manufacturers have intentionally kept what dyes they use a secret (instead of a feature in their marketing of the media), and all blank DVDs are intentionally the same color (as different dyes on CDs make blanks different colors, however, it is not indicative of what dye is used due to some manufacturers using different colored silver alloys and non-reactive additives in the dye).

Why Taiyo Yuden media, and how to buy in the US
The best discs in circulation tend to be Taiyo Yuden media. In Japan, you find their media under the brand That’s, which are wholly owned by Taiyo Yuden.

As of late 2009, Taiyo Yuden announced they were buying the JVC Advanced Media brand, and making it a wholly owned and operated brand for TY products. They did this to put Taiyo Yuden products on store shelves worldwide. See update 4 at the bottom for a full explanation.

Simply put, I have never had problems with any kind of Taiyo Yuden media. Ever. I have bought CDs and DVDs under a dozen different brands (including non-Taiyo Yuden manufactured TDK and Verbatim), and the only ones that have had a 100% success rate is Taiyo Yuden.

If you cannot find any company selling media under the Taiyo Yuden/JVC Advanced Media brand, I suggest buying from the, who offer a wide range of Taiyo Yuden CD media, DVD-R media, and DVD+R media. I tend to buy just from them, as they are the only company that guarantees that their media is actually from Taiyo Yuden and not a fake (see the above linked FAQ on information about fake Taiyo Yuden media).

Why DVD+R?
This is the most technical section of the article. If you don’t understand the basics of how CD/DVD media works, or find such technical discussions boring, skip to the next section.

As I said earlier, DVD-R sucks for data preservation for three reasons: inferior error correction, inferior ‘wobble’ tracking, and the fact its data writing methods look like an un-needed halfway point between CD-R and DVD+R. The wobble tracking I shall explain first, then the error corrections method, then the specifics of ATIP/pre-pit/ADIP optimum power settings.

For a CD/DVD burner to track where it is on the disc, it uses three things: the ‘wobble’ of the data track (where it actually wobbles back and forth instead of in a straight line) to tell where it is in the track, the position of the track to tell where it is on the disc, and some additional information on the disc to tell where the track (singular, as CDs and DVDs only have one track, and it is written in a concentric spiral) begins and ends.

This additional information on a CD-R is called the ATIP (Absolute Time In Pregroove), which contains how long the track is, where it begins, what the maximum and minimum writing speeds are, what formula dye it uses, who actually made it, optimum power control settings, and error correction data. The ATIP is stored as a frequency modulation in the wobble itself.

However, since the wobble changes subtly to encode data, it is impossible to use with the small size of tracks DVD requires, as electric noise in the laser pickup and wobbles introduced by the electric motor spinning the disc, these could easily be read as frequency changes in the real track itself.

On DVD-R, they tried to solve the problem with something called ‘pre-pits’ where spikes in the amplitude of the wobble appear due to pits fully out of phase with the rest of the track (ie, between two spirals of the track, where there is no data). This can be viewed as a simple improvement over CD-R as it makes it easier to track the wobble (since the wobble is constant except for the easy to detect and remove spikes).

Unfortunately, this method as one flaw: due to electric noise in the laser pickup, it would be very easy to miss the pre-pit (or read one that wasn’t actually there) if the disc were damaged or spun at fast speeds. The time to read a pre-pit is 1T (roughly .0000000038th of a second), which even for a computer can be easy to miss. DVD-R traded hard to track frequency changes for hard to read wobble-encoded data.

On a DVD+R, however, they came up with a much better method. Instead of changing the frequency of the wobble, or causing amplitude spikes in the wobble, they use complete phase changes. Where CD-R’s and DVD-R’s methods make you choose between either easy wobble tracking or easy ATIP reading, DVD+R’s method makes it very easy to track the wobble, and also very easy to encode data into the wobble. DVD+R’s method is called ADIP (ADdress In Pre-groove), which uses a phase change method.

With ADIPs’ phase changes, the direction of the wobble changes and continues on going in the exact opposite direction (ie, counter-clockwise to clockwise, or the reverse). For example, if the wobble was ‘going up’, the phase change causes it to instantly reverse direction start ‘going down’ no matter where it in the wobble cycle. The phase change is very easy to detect, and also continues for a set period (in this case, one 32T section of the track, or 32 times longer than the pre-pit method of DVD-R).

The state of the phase change (clockwise or counter-clockwise) encodes the individual bits in each block In essence, with the phase change method, not only do you have an easy way of tracking the wobble, but you now have an easy way of reading wobble-encoded data.

As I mentioned earlier, this wobble-encoded data includes error correction of wobble-encoded data itself. Error correction is the most important part of media, because if it does not work, then you’ve lost your data, even if there is nothing seriously wrong with the disc.

The DVD-R specification states that for every 192 bits, 64 of them are not protected under any scheme, 24 of them are protected by 24 bits of parity, and the last 56 bits are protected by another 24 bits of parity. This weird (to put it mildly) scheme allows you to easily scramble or lose 25% of the data that is required to read your disk! This information is almost more important than the actual data burned on the disc itself.

The DVD+R specification, however, states that for every 204 bits of information, it is split into four blocks of 52 bits containing 1 sync bit to prevent misreading because of phase changes, 31 bits of data, and a 20 bit parity (that protects all 32 bits of data). The sync bit is always the same value in all four blocks, and exists only to prevent phase inversions.

Now, the third item on the list: how DVD+R discs burn better. As I said earlier, ATIP/pre-pit/ADIP stores information about optimum power control settings. This information is basically formulas stating how much output power is needed, what the laser startup power should be, and other pieces of information you require to properly burn a DVD.

Optimum power control output is dependent on three things: burning speed, laser wavelength, and information given to the drive about the media. DVD-R basically fails on all three accounts because DVD+R simply includes far more information about the media in the ADIP data than DVD-R does in it’s pre-pit data.

DVD+R includes four optimum profiles, one for four major burning speeds (usually 2x, 4x, 6x, and 8x, though this can change as speeds increase). Each of these profiles include optimum power output based on laser wavelength, more precise laser power settings, and other additional information. With this information, any DVD+R burner can far more optimize it’s burning strategy to fit the media than it can with DVD-R, consistently providing better burns.

For comparison, DVD-R includes one profile, optimum power output based for that one profile only and uncalibrated towards what wavelength it is for, less precise laser power settings, and no other additional information. Typically, DVD-R burners have to already know how to burn a certain piece of media (and include this information in their firmwares) before they can properly burn to it. New media often is not properly supported.

In addition to the optimum power control profiles, DVD+R also gives four times more scratch space for the drive to calibrate the laser on; more space can only improve the calibration quality. So, in short, DVD+R media exists to simply produce better burns and protect your data better.

And finally, the end of the article…
Finally, after roughly three pages of technical discussion, we arrive at the end of my dissertation on archival quality CD/DVD media. So, you’re probably now wondering, in simple terms, what media do I recommend?

To begin with, I do not recommend CD-RW, DVD-RW, or DVD+RW media in any form for permanent storage. This is mostly a no-brainer, but those discs are meant to be able to be changed after burning, and they are simply unsuitable for long-term archival storage. I also do not recommend DVD-R media due to DVD+R’s superior error correction and burning control.

That said, I recommend Taiyo Yuden media across the board. Taiyo Yuden currently manufactures 52x CD-R, 16x DVD-R, and 16x DVD+R media in normal shiney silver, inkjet printable, and thermal printable forms. Taiyo Yuden may be one of the most expensive (if not the most expensive), but their media quality is unsurpassed. Also, as I mentioned earlier, I recommended buying from as they are the only online US distributor that guarantees that their Taiyo Yuden media is certified as coming from Taiyo Yuden.

So, what am I using? Due to Taiyo Yuden’s superior media quality, and DVD+R’s superior design, I use only Taiyo Yuden DVD+R media. I recommend this media to everyone who wishes to keep their data for a long, long time.

Update 1: It seems MAM-A and Kodak actually has managed to make a gold DVD, though no one else seems to be manufacturing them (Taiyo Yuden/JVC Advanced Media now makes an archival gold disc, see update 6). However, MAM-A’s gold archival media still doesn’t seem to exceed TY quality (although Mr 60,000 in the comments below puts TY second best to MAM-A). Due to the extreme cost of gold archival media ($2+ a disc) with very little increased protection (if any), I’ll still say TY media is better. I want to see more independent tests on this before I change my recommendation.

In addition, I’d like to mention that Verbatim has been relabeling other brands of disc as their own. If the box/spindle/cakebox the discs come in don’t say they’re manufactured with Verbatim’s proprietary Azo dye (sometimes called Advanced Azo, sometimes not, depending on the product) then they aren’t Verbatim media at all and should be avoided as they may not meet typical home archival standards.

Update 2: (Sept. 19th 2007) Its almost been a year since I first wrote this article. My recommendations for media have not changed, my recommendations for DVD burners have.

Samsung: Samsung is currently producing two drives worth owning, the
Samsung SH-S222AB
(SATA). They’re not considered archival grade, but they’re not bad.

TEAC: TEAC makes an archival drive that is ISO/IEC10995 compliant, and is very expensive. Comes in two forms, external USB DV-W5000U and internal SATA DV-W5000S. I’ve seen DV-W5000U drives for sale for $500, and refurbished DV-W5000S drives for $150-200. This is the elite of drives, and recommended if you’re very serious about 30+ year archival storage.

Update 3: (July 26th 2009) Its been awhile since I updated this article. Pioneer is no longer manufacturing drives worth using. Just buy a Samsung or TEAC drive like I link to above. I’m using two Samsung drives now after my PX-716 finally died after years of service.

My recommendation on TY and Verbatim hasn’t changed, and I imagine it will never change; DVD media will not change significantly from here on out. Bluray in my opinion is not worth switching over to unless you’re storing data that can be measured in hundreds of gigabytes, and at that point you might want to look into archival tape storage.

When Bluray is worth switching over to, I’ll write a follow up article to this one. High quality single layer media will have to drop below 50 cents a piece and Bluray burners will have to become ubiquitous (much like DVD burners are now) before that happens. I’m thinking 2011 or later.

Update 4: (August 3rd 2010) Taiyo Yuden has bought the JVC Media brand and is now operating under the JVC Advanced Media brand. You can now buy TY inside JVC boxes and get your usual TY quality. This site has the conversion of part numbers.

JVC has not bought Taiyo Yuden, and Taiyo Yuden is in full control of this new venture. They merely bought they name so they can put TY products on store shelves worldwide. is selling almost all JVC Advanced Media branded TY products in place of the old TY branded ones.

Update 5: (September 27th 2011) A few people have asked about how PIE/PIF scans work.

DVD-R and DVD+R both employ two stage error correction.

PIE (Parity Inner Error) just means error correction was used, PIF (Parity Inner Failure) means the error was unrecoverable using the inner ECC block but still may be recovered using the outer ECC block . On tools that give avg/max/total, max PIE values above 140, or max PIF values above 4* means the disc needs to be replaced but the data most likely isn’t corrupted yet**.

For a burn to be considered still pristine you want max PIE below 20 and max PIF 3 or lower.

Discs will NOT be pristine after 5 years, but there is a fall off of PIF/PIE increasing after 6 months and doesn’t seem to start picking up again until 5-10 years depending on storage environment.

Totals for PIF can be as high as 100k yet have a max of 20, and total PIF can be as high as 1000 but have a max below 3. Max PIE is considered mostly fatal above 280 and can reach as high as 1664, and max PIF can reach as high as 208*.

DVD+R generally will maintain lower values for both due to superior error correction techniques.

* Some tools and/or drives won’t list above 4 for PIF.

** Some tools and/or drives also list PO (Parity Outer) uncorrectable errors. This is for any read that has a max PIF above 4. This indicates a mostly unrecoverable data corruption error, which would effect (if I’ve done my math right) 36k of data (although that doesn’t mean the whole 36k of data is corrupted, just that its corrupted inside of that 36k). This still does not indicate the disc is unreadable, some obsessive ripping tools will try multiple reads in an effort to get a valid read or different incorrect reads that can be merged into a valid read.

Update 6: (January 11th 2013) Taiyo Yuden announced last year that they are now producing an ISO/IEC10995 compliant archival grade gold alloy DVD-R. Sadly, its not DVD+R and I’m hoping they’ll consider making a DVD+R version as well. Not many vendors carry this disc yet.

Also, a few people have asked when I’m going to write that Bluray follow up article. I don’t think Bluray is viable for long term archival storage yet. I continue my recommendation that if you need to store hundreds of gigabytes of data or more, consider archival tape.

Written by
Open Source software architect and technologist. He's just this guy, you know? Follow him him on Google+.
Published in
Transmissions from the Little Blue Marble

Published October 30th, 2006


1,249 Responses

I have another question, I don’t know if anyone will be able to answer it, but… I occasionally buy promotional CDs that are CDRs, are CDRs from record companies more likely to last longer then your typical burned CDR?

I’ve been a believer in TY media for a few years, buying exclusively from SuperMediaStore, and have never been disappointed.
I’ve been using -R, so many thanks for this article pointing out the superiority of +R. It’s unfortunate that TY +R is about twice the price of TY -R (46c/disc instead of 24) but that’s still cheap compared to losing data.

FWIW, I like my NEC 3550 drive, though lately I’ve had good luck with TSSTCorp (Toshiba/Samsung) drives as well; in particular the latter seem able to read very marginal, screwed up discs that nothing else can get data off of.
I had an old Sony DRU500 that went bad silently; a year later I discovered that hundreds of discs burned on it had degraded and were barely readable. I lost no important data but I had to find the ONE drive that could (barely) read the discs (it wasn’t the Sony) and make copies of several hundred DVDs.

Francis Ainley: I’d use whatever is compatible with your target stand alone player. Some won’t play any burns at all, some won’t play DVD-R, some won’t play DVD+R.

But yes, DVD video really isn’t video at all, it is still data, stored the same way all other data is stored. DVD+R will protect video DVDs better than DVD-R.

Do the advantages you describe of DVD+R over DVD-R also exist when burning DVD video disks? I have quite an old Panasonic DVD player that quite happily plays the DVD+R’s that I burn, so I was wondering whether the extra information that is included on DVD+R’s is also written to DVD video disks that have to be compatible with players going years back.

Gast: T@2 is no different then burning data; it is still using the media the same way.

I don’t see T@2 altering the life of the media in any way… it only reduces the storage space available.

Steve Bonds: Yeah, I knew I saw it somewhere.

Thanks for the pointer down a track I thought I’d already read. It led me to this article:

Which summarizes the meaning of the codes nicely:

4x – GDxxxxxx
8x – GGxxxxxx
16x- GHxxxxxx

4x – TSxxxxxx
8x – TGxxxxxx
16x- THxxxxxx

— Steve

Roberto: Brazil has a mold that it’s sole existence is to eat media. Pressed, burned, rewritable, CD, DVD: if it is a disc, this mold will ruin it.

I’ve heard stores about this from people from Brazil, or just getting back from Brazil. You can’t defeat the stuff.

Steve Bonds: Look at the burnable side, you’ll see a purple ring close to the center of the disc, in the burnable media.

It will have text on it; this exists to prevent fakes on the market (fakes don’t copy this technique often because it is supposed to be expensive and hard to copy).

Now, I don’t know if CD media has this, and I haven’t noticed this on other manufacturer’s DVDs.

This probably won’t help you in actually telling the difference unless you memorize what ID codes are for what media.

The CDFreaks FAQ I linked in the article I think does list what codes are for what media.

So how does the labeling systems where you can flip the disk over and “T@2″ a label to the back side of the disk effect the life of the media?

You mentioned that TY markings are still on the disc if you know where to look”. I’m constantly getting my spindles of CD-R and DVD-R (yeah, I know) mixed up if my hand-lettered labels come off.

Where can I find more information about where these markings are and how to decode them?

— Steve

Hi, great article! I’ve wondered about a lot of these issues for awhile now, and a friend forwarded this. Now the only question I have left is a rather esoteric one: Mold in hot climates, how do they affect DVD medias inks, and how can I protect my discs from them?

A little explination though. I travel a lot to Brazil, and my last trip there my cousin showed me some of his burned storage CDs that were missing little squares from their coating (You could see through the disc) He said there is a mold, or other fungi, that eats the CDs and that they only last about 3-5 years tops. I have not found any hard data about this condition and was wondering what you knew of it, and if it affects burned DVDs as well.


DVD+R/+RW is the BEST media for Sony/Philips DVD+R/+RW-based firmware (even those that support DVD-R/-RW) drives. They don’t implement Disc-at-Once (DaO) and other character-by-character record support that Pioneer DVD-R licensees do. As such, you do *NOT* want to use DVD-R in a DVD+R/+RW-based drive/firmware.

With that said …

DVD-RAM — it was first designed explicitly for optical archiving, it’s still extremely popular, and it will still be very proliferated and popular years from now. A 30 year standard for 30 year media.

DVD-R — if you have a _true_ DVD-R firmware drive (e.g., LS GSA), you can use character-by-character recording software (e.g., cdrecord+DVDpatch) in DaO/SaO modes with BurnProof turned off. And when you do that, you get a “single, clean, contiguous groove” that’s “like a record” that even the oldest of DVD players can support!

So yes, while DVD+R/+RW was designed for the “consumer PC” generation, there’s something to be said for *THE*KING* of optical archiving, DVD-RAM, as well as a media that is “like a record” in a single groove that even the dumbest drives can run their lasers along.

Sony/Philips has consistently over-promised and under-delivered — from the original 3GB, Japan-only format to the 1st-gen DVD+RW not even offering DVD+R (much less the originally promised DVD-R compatibility) and corresponding lawsuits (especially against HP) to the fact that Sony/Philips own consumer DVD players couldn’t read DVD+R/+RW until 2004+.

Sony’s (“big media’s”) position, especially on BluRay, is about “control,” not “standards.” Yes, they make a few, good technical implementations every now and then. DVD+RW (and +R) have some advantages, given a PC-context. But they aren’t interested in using existing standards (e.g., UDF), and they definitely aren’t interested in an independent body being over them!

Kevin: I knew that, but is been a long… long… loooong day. I’m not sure why I said dye.

But yeah, the fact that it can only be rewritten only so many times (and isn’t in the same magnitude that DVD-RAM is) is a real put off.

You think RW media uses dyes? Now I’m sure you’ve erred in not considering RW. My understanding is that RW media is far superior to R media (at least in longevity) specifically because they do not use dyes and are not subject to fade. From WikiPedia: The recording layer in DVD-RW and DVD+RW is not an organic dye, but a special phase change metal alloy, often GeSbTe. The alloy can be switched back and forth between a crystalline phase and an amorphous phase, changing the reflectivity, depending on the power of the laser beam. Data can thus be written, erased and re-written.

More details about the Kodak Preservation DVD-Rs, which use gold in the reflective layer:

This extreme preference for +R does not seem to be based on real test results. If you check reviews on CDFreaks, you’ll notice that some models does better with +R, and others with -R. There is a tendency of +R doing somewhat better on average, but it’s not definitely the definitive answer for every media and burner model.

Constantine Evans: Yuck. I’d imagine NOR wouldn’t lose data, but then again NOR is horridly expensive and not what you find in USB keys and CompactFlash/SD/MemoryStick/etc.

The world needs to invent a cheaper method to archive large amounts of data.

Juan Valdez: I almost agree with DigitalFAQ’s ranking, but I’d move Sony down to 2nd class, all Ritek/Ricoh/Ridata to 3rd or 4th, the FujiFilm IDs to 3rd, and Moser Baer down to 3rd.

The CMCMAG IDs should be moved to 2nd with reservation. Non-Verbatim branded Mitsuibishi Chem discs should be moved to 2nd.

I’d keep actual Verbatim branded discs in 1st (Mitsuibishi Chem owns Verbatim the same way TY owns That’s).

Also, there are many people who believe MAM-A should be moved to 2nd or 1st. I’d like to see more independent tests before I agree with them.

Al: Get rid of the Ricoh discs. They’re horrid and are the complete opposite of archival quality. I don’t even get how Ricoh/Ritek/Ridata are still in business.

As for the Kodak discs, according to this page at Kodak’s website, they don’t make them anymore. However, they seem to be archival safe. I’d continue using them.

just wanted to let any aus readers know that Taiyo Yuden is available in australia from and as well put above somewhere , i have no affiliation apart from being a very satisfied customer
great article
used mitsui cds for some time thousands of discs and when their quality dipped for a short time about 2 years ago, i researched and found taiyo and havent looked back , just a simple yak herders 2 cents worth :)

rainking: They are just different printable surfaces.

White inkjet printable is for any inkjet printer that supports printing on discs.

Clear/silver inkjet printable is for any printer that supports printing on clear surfaces; these printers typically have white ink.

Thermal printable is for using a special thermal disc printer, such as the Everest thermal printers.

Hub printable means that the hub can be printed on.

Any of them can be written on using a Sharpie, so just buy the cheapest of the five unless you plan on inkjet printing or thermal printing with hub; its all the same media underneath.

As a response to those who recommended flash memory, I should note that a variety of people (mostly professors at UCSD) have told me that flash memory is horribly unsuitable for archival uses and *will* lose data, probably over a period of ~10 years.

From a cursory glance at the method of operation, it seems to me that this would make sense, as electrons will leak from the floating gate over time.

I bought some years ago RICOH Platinum CD-R (advanced Phthalocyanine)type 74 650MB disks. I was planning on using the disks for long term storage. I Also have Kodak InfoGuard disks. Is either any good for long term storage?

I’m curious what you (the author) think of this link:
I was always of the mind that TYs are the best, with no competition. The article above also cites Pioneer, Hitachi Maxell, and Mitsubishi Chemicals in their top 5 archival quality media. I got the link from Lifehacker and was surprised to see anything but TYs as da bomb.
Lifehacker link: here
Also, you’ve been picked up by slashdot (if you weren’t aware), which is where I found YOUR article:here.

Looking at the Super Media Store link you posted there’s like 5 different types of Taiyo Yuden CD-Rs at varying prices. Is there any one in particular that’s better then the others, or will any Taiyo Yuden CD-R do?

Geo: The weight of the label throws off the balance of the disc, which can wear out drives easier, or may even ruin the disc. The glue also can degrade the disc.

Neil: In my case, I can’t afford to do something large scale like live offsite mirrors… so to protect the data the closest I can do is a RAID that is offline and unplugged when not in use.

As for modern Cyanine-based formulas, I’d like to see more tests done. If MAM-A has managed to do stuff right, and multiple independent tests prove its better than TY, I may start recommending MAM-A.

Jiri: I was using the English-afied version someone translated from the official standard, but I can’t seem to find that site now.

Patrick –

what DVD-R specification are you referring to regarding parity bits?
All data in DVD-R are protected by an error correction code, see standard ECMA-359, Section 18, ECC Block configuration:

“An ECC Block is formed by arranging 16 consecutive Scrambled Frames in an array of 192 rows of 172 bytes each, see Figure 27. To each of the 172 columns, 16 bytes of Parity of Outer Code are
added, then, to each of the resulting 208 rows, 10 byte of Parity of Inner Code are added. Thus a complete ECC Block comprises 208 rows of 182 bytes each.”


Unfortunately, I have been unable to find a specification for DVD+R.

Regards, — Jiri

Leave a Reply