How To Choose CD/DVD Archival Media

(Last updated January 11th 2013)

Translations: Serbo-Croatian by Jovana Milutinovich

Ahh, I’ve been planning to write this one for awhile: an entire article on archival quality media. As I do professional software development as well as professional photography (what a weird combination), I need archival quality CD and DVD media to store my data on.

However, one of the hardest things to is actually find good media, or even understand why it is good media. This article focuses on the history of Compact Discs, writable CD/DVD media, and why DVD+R is superior to DVD-R. If you want to just know what media is worth buying, skip to the summary at the bottom.

Short history of the Compact Disc
The invention of the Compact Disc has had a large impact on both music and computing in the last 20 years. Invented in 1979 as a joint project between Sony and Philips to counter the self-destructive nature of consumer audio playback (such as tapes and records that could only be played so many times before the recording degraded significantly) by switching to a resilient digital format.

The CD was also designed to store standard computer data, as in 1985 the first CD drives for computers were released; massive, bulky, and expensive, it was not until the mid-90s that they really took off, driven almost solely by video games and large multimedia applications.

In 1990, Sony and Philips went back to the drawing table, and then came out with the CD-R, a record-once medium. Yet again, the first CD burners were large, expensive, and bulky, but by the late 90s having a CD burner was the new ‘in’.

The first few generations of CD media, designed by Taiyo Yuden (a company who I respect, and buy all my archival quality media from), actually kind of sucked; it wasn’t until around 2000 that companies started producing very high end media.

CDs and DVDs store individual bits (encoded in various ways depending on the media) with spots of reflective and non-reflective areas. This method is called ‘pits and lands’, where pits ‘absorb’ light (ie, are ‘off’ bits) and lands ‘reflect’ light (ie, are ‘on’ bits).

With pressed media, the pressing method causes pits to reflect the laser’s light away from the sensor, and the lands to reflect it back at the sensor. With burned media, a high energy laser causes spots of organic dye to go opaque and obscure the reflective surface for the pits, leaving the organic dye for lands alone.

Short history of the DVD
While burning was becoming popular in the late 90s, so was playing high quality video on DVDs. Storing almost 7 times the data of a 700MB CD (or almost 13 in the case of dual layer DVDs), allowed companies to store massive amounts of data on one disc, leading to the movie industry to drop VHS tapes and the video game industry to drop CDs.

In 1995, the first DVD specification was ratified by over a dozen companies including Sony and Philips, as well as Thompson, Pioneer, and Mitsubishi. By 2000, at least half the homes in the US and Japan had DVD players.

So, obviously, the next step was to produce burnable DVDs. Two separate, and incompatible, efforts took hold. The first one, Pioneer’s DVD-R (pronounced ‘DVD dash R’) was released in 1997, using different data storage methods than pressed DVDs (appearing to be more like CD-R than DVD), a poor error correction scheme, and the ‘wobble’ laser tracking system of DVD-R is inadequate for the job.

The second effort, lead by the DVD+RW Alliance (headed by Sony, Philips, Mitsubishi, and Thompson) was released in 2002, as an alternative to the poorly implemented DVD-R. DVD+R uses a superior ‘wobble’ laser tracking system, a far better error correction method, and the media quality itself is typically higher. (See the ‘Why DVD+R?’ section below for a more technical explanation)

Why archival media is hard to produce
Unlike pressed CDs/DVDs, ‘burnt’ CDs/DVDs can eventually ‘fade’, due to five things that effect the quality of CD media: Sealing method, reflective layer, organic dye makeup, where it was manufactured, and your storage practices (please keep all media out of direct sunlight, in a nice cool dry dark place, in acid-free plastic containers; this will triple the lifetime of any media).

The silver and aluminum alloys used in virtually all blank CD/DVD media has one major issue, requiring the manufacturer to lacquer a protective seal over the entire disc: silver and aluminum oxidize when they hit air, turning the normally reflective layer into silver or aluminum rust. Some (very expensive) media uses gold instead which doesn’t oxidize, however DVD media cannot use gold due to design issues (not true anymore, see update 1 below). Today, only the cheapest of the cheap media has severe issues with sealing practices (as such, avoid any media made outside of Japan and Taiwan; especially avoid media made in India).

Assuming that the protective seal and reflective layer are manufactured correctly, the next issue is the organic dye. The first organic dyes, designed by Taiyo Yuden, were Cyanine-based and, under normal conditions, had a shelf life of around ten years; simply, that was simply unacceptable for archive discs. Taiyo Yuden, Mitsubishi Chemicals, Mitsui Co., and Ciba Specialty Chemicals spent the next ten years trying to produce the best organic dyes, eventually reaching archive-quality CD media.

Taiyo Yuden produced ‘Super Cyanine’, a chemically stabilized version of the original Cyanine dye designs, while TDK offers media that uses ‘metal-stabilized Cyanine’ dye, leading to similar shelf lives as Taiyo Yuden’s media. Taiyo Yuden states their Super Cyanine dye is chemically stable for at least 70 years, and TDK states their metal-stabilized Cyanine is also stable for 70 years.

On the other hand, Mitsubishi went in a different direction and produced what is called a Metal Azo dye, that they claim is stable for around 100 years. Azo dyes are chemically stable, however, the shelf life of media using Azo dyes typically does not exceed that of Super Cyanine and metal-stabilized Cyanine.

The third dye produced for CD media is called Phthalocyanine dye, with the majority of such dyes produced by Mitsui and Ciba. Typically marketed as more resistant to heat and UV radiation than Cyanine and Azo, modern Cyanine and Azo dyes last just as long in extreme conditions.

DVDs also use similar dyes, however manufacturers have intentionally kept what dyes they use a secret (instead of a feature in their marketing of the media), and all blank DVDs are intentionally the same color (as different dyes on CDs make blanks different colors, however, it is not indicative of what dye is used due to some manufacturers using different colored silver alloys and non-reactive additives in the dye).

Why Taiyo Yuden media, and how to buy in the US
The best discs in circulation tend to be Taiyo Yuden media. In Japan, you find their media under the brand That’s, which are wholly owned by Taiyo Yuden.

As of late 2009, Taiyo Yuden announced they were buying the JVC Advanced Media brand, and making it a wholly owned and operated brand for TY products. They did this to put Taiyo Yuden products on store shelves worldwide. See update 4 at the bottom for a full explanation.

Simply put, I have never had problems with any kind of Taiyo Yuden media. Ever. I have bought CDs and DVDs under a dozen different brands (including non-Taiyo Yuden manufactured TDK and Verbatim), and the only ones that have had a 100% success rate is Taiyo Yuden.

If you cannot find any company selling media under the Taiyo Yuden/JVC Advanced Media brand, I suggest buying from the SuperMediaStore.com, who offer a wide range of Taiyo Yuden CD media, DVD-R media, and DVD+R media. I tend to buy just from them, as they are the only company that guarantees that their media is actually from Taiyo Yuden and not a fake (see the above linked FAQ on information about fake Taiyo Yuden media).

Why DVD+R?
This is the most technical section of the article. If you don’t understand the basics of how CD/DVD media works, or find such technical discussions boring, skip to the next section.

As I said earlier, DVD-R sucks for data preservation for three reasons: inferior error correction, inferior ‘wobble’ tracking, and the fact its data writing methods look like an un-needed halfway point between CD-R and DVD+R. The wobble tracking I shall explain first, then the error corrections method, then the specifics of ATIP/pre-pit/ADIP optimum power settings.

For a CD/DVD burner to track where it is on the disc, it uses three things: the ‘wobble’ of the data track (where it actually wobbles back and forth instead of in a straight line) to tell where it is in the track, the position of the track to tell where it is on the disc, and some additional information on the disc to tell where the track (singular, as CDs and DVDs only have one track, and it is written in a concentric spiral) begins and ends.

This additional information on a CD-R is called the ATIP (Absolute Time In Pregroove), which contains how long the track is, where it begins, what the maximum and minimum writing speeds are, what formula dye it uses, who actually made it, optimum power control settings, and error correction data. The ATIP is stored as a frequency modulation in the wobble itself.

However, since the wobble changes subtly to encode data, it is impossible to use with the small size of tracks DVD requires, as electric noise in the laser pickup and wobbles introduced by the electric motor spinning the disc, these could easily be read as frequency changes in the real track itself.

On DVD-R, they tried to solve the problem with something called ‘pre-pits’ where spikes in the amplitude of the wobble appear due to pits fully out of phase with the rest of the track (ie, between two spirals of the track, where there is no data). This can be viewed as a simple improvement over CD-R as it makes it easier to track the wobble (since the wobble is constant except for the easy to detect and remove spikes).

Unfortunately, this method as one flaw: due to electric noise in the laser pickup, it would be very easy to miss the pre-pit (or read one that wasn’t actually there) if the disc were damaged or spun at fast speeds. The time to read a pre-pit is 1T (roughly .0000000038th of a second), which even for a computer can be easy to miss. DVD-R traded hard to track frequency changes for hard to read wobble-encoded data.

On a DVD+R, however, they came up with a much better method. Instead of changing the frequency of the wobble, or causing amplitude spikes in the wobble, they use complete phase changes. Where CD-R’s and DVD-R’s methods make you choose between either easy wobble tracking or easy ATIP reading, DVD+R’s method makes it very easy to track the wobble, and also very easy to encode data into the wobble. DVD+R’s method is called ADIP (ADdress In Pre-groove), which uses a phase change method.

With ADIPs’ phase changes, the direction of the wobble changes and continues on going in the exact opposite direction (ie, counter-clockwise to clockwise, or the reverse). For example, if the wobble was ‘going up’, the phase change causes it to instantly reverse direction start ‘going down’ no matter where it in the wobble cycle. The phase change is very easy to detect, and also continues for a set period (in this case, one 32T section of the track, or 32 times longer than the pre-pit method of DVD-R).

The state of the phase change (clockwise or counter-clockwise) encodes the individual bits in each block In essence, with the phase change method, not only do you have an easy way of tracking the wobble, but you now have an easy way of reading wobble-encoded data.

As I mentioned earlier, this wobble-encoded data includes error correction of wobble-encoded data itself. Error correction is the most important part of media, because if it does not work, then you’ve lost your data, even if there is nothing seriously wrong with the disc.

The DVD-R specification states that for every 192 bits, 64 of them are not protected under any scheme, 24 of them are protected by 24 bits of parity, and the last 56 bits are protected by another 24 bits of parity. This weird (to put it mildly) scheme allows you to easily scramble or lose 25% of the data that is required to read your disk! This information is almost more important than the actual data burned on the disc itself.

The DVD+R specification, however, states that for every 204 bits of information, it is split into four blocks of 52 bits containing 1 sync bit to prevent misreading because of phase changes, 31 bits of data, and a 20 bit parity (that protects all 32 bits of data). The sync bit is always the same value in all four blocks, and exists only to prevent phase inversions.

Now, the third item on the list: how DVD+R discs burn better. As I said earlier, ATIP/pre-pit/ADIP stores information about optimum power control settings. This information is basically formulas stating how much output power is needed, what the laser startup power should be, and other pieces of information you require to properly burn a DVD.

Optimum power control output is dependent on three things: burning speed, laser wavelength, and information given to the drive about the media. DVD-R basically fails on all three accounts because DVD+R simply includes far more information about the media in the ADIP data than DVD-R does in it’s pre-pit data.

DVD+R includes four optimum profiles, one for four major burning speeds (usually 2x, 4x, 6x, and 8x, though this can change as speeds increase). Each of these profiles include optimum power output based on laser wavelength, more precise laser power settings, and other additional information. With this information, any DVD+R burner can far more optimize it’s burning strategy to fit the media than it can with DVD-R, consistently providing better burns.

For comparison, DVD-R includes one profile, optimum power output based for that one profile only and uncalibrated towards what wavelength it is for, less precise laser power settings, and no other additional information. Typically, DVD-R burners have to already know how to burn a certain piece of media (and include this information in their firmwares) before they can properly burn to it. New media often is not properly supported.

In addition to the optimum power control profiles, DVD+R also gives four times more scratch space for the drive to calibrate the laser on; more space can only improve the calibration quality. So, in short, DVD+R media exists to simply produce better burns and protect your data better.

And finally, the end of the article…
Finally, after roughly three pages of technical discussion, we arrive at the end of my dissertation on archival quality CD/DVD media. So, you’re probably now wondering, in simple terms, what media do I recommend?

To begin with, I do not recommend CD-RW, DVD-RW, or DVD+RW media in any form for permanent storage. This is mostly a no-brainer, but those discs are meant to be able to be changed after burning, and they are simply unsuitable for long-term archival storage. I also do not recommend DVD-R media due to DVD+R’s superior error correction and burning control.

That said, I recommend Taiyo Yuden media across the board. Taiyo Yuden currently manufactures 52x CD-R, 16x DVD-R, and 16x DVD+R media in normal shiney silver, inkjet printable, and thermal printable forms. Taiyo Yuden may be one of the most expensive (if not the most expensive), but their media quality is unsurpassed. Also, as I mentioned earlier, I recommended buying from SuperMediaStore.com as they are the only online US distributor that guarantees that their Taiyo Yuden media is certified as coming from Taiyo Yuden.

So, what am I using? Due to Taiyo Yuden’s superior media quality, and DVD+R’s superior design, I use only Taiyo Yuden DVD+R media. I recommend this media to everyone who wishes to keep their data for a long, long time.

Update 1: It seems MAM-A and Kodak actually has managed to make a gold DVD, though no one else seems to be manufacturing them (Taiyo Yuden/JVC Advanced Media now makes an archival gold disc, see update 6). However, MAM-A’s gold archival media still doesn’t seem to exceed TY quality (although Mr 60,000 in the comments below puts TY second best to MAM-A). Due to the extreme cost of gold archival media ($2+ a disc) with very little increased protection (if any), I’ll still say TY media is better. I want to see more independent tests on this before I change my recommendation.

In addition, I’d like to mention that Verbatim has been relabeling other brands of disc as their own. If the box/spindle/cakebox the discs come in don’t say they’re manufactured with Verbatim’s proprietary Azo dye (sometimes called Advanced Azo, sometimes not, depending on the product) then they aren’t Verbatim media at all and should be avoided as they may not meet typical home archival standards.

Update 2: (Sept. 19th 2007) Its almost been a year since I first wrote this article. My recommendations for media have not changed, my recommendations for DVD burners have.

Samsung: Samsung is currently producing two drives worth owning, the
Samsung SH-S222AB
(SATA). They’re not considered archival grade, but they’re not bad.

TEAC: TEAC makes an archival drive that is ISO/IEC10995 compliant, and is very expensive. Comes in two forms, external USB DV-W5000U and internal SATA DV-W5000S. I’ve seen DV-W5000U drives for sale for $500, and refurbished DV-W5000S drives for $150-200. This is the elite of drives, and recommended if you’re very serious about 30+ year archival storage.

Update 3: (July 26th 2009) Its been awhile since I updated this article. Pioneer is no longer manufacturing drives worth using. Just buy a Samsung or TEAC drive like I link to above. I’m using two Samsung drives now after my PX-716 finally died after years of service.

My recommendation on TY and Verbatim hasn’t changed, and I imagine it will never change; DVD media will not change significantly from here on out. Bluray in my opinion is not worth switching over to unless you’re storing data that can be measured in hundreds of gigabytes, and at that point you might want to look into archival tape storage.

When Bluray is worth switching over to, I’ll write a follow up article to this one. High quality single layer media will have to drop below 50 cents a piece and Bluray burners will have to become ubiquitous (much like DVD burners are now) before that happens. I’m thinking 2011 or later.

Update 4: (August 3rd 2010) Taiyo Yuden has bought the JVC Media brand and is now operating under the JVC Advanced Media brand. You can now buy TY inside JVC boxes and get your usual TY quality. This site has the conversion of part numbers.

JVC has not bought Taiyo Yuden, and Taiyo Yuden is in full control of this new venture. They merely bought they name so they can put TY products on store shelves worldwide.

SuperMediaStore.com is selling almost all JVC Advanced Media branded TY products in place of the old TY branded ones.

Update 5: (September 27th 2011) A few people have asked about how PIE/PIF scans work.

DVD-R and DVD+R both employ two stage error correction.

PIE (Parity Inner Error) just means error correction was used, PIF (Parity Inner Failure) means the error was unrecoverable using the inner ECC block but still may be recovered using the outer ECC block . On tools that give avg/max/total, max PIE values above 140, or max PIF values above 4* means the disc needs to be replaced but the data most likely isn’t corrupted yet**.

For a burn to be considered still pristine you want max PIE below 20 and max PIF 3 or lower.

Discs will NOT be pristine after 5 years, but there is a fall off of PIF/PIE increasing after 6 months and doesn’t seem to start picking up again until 5-10 years depending on storage environment.

Totals for PIF can be as high as 100k yet have a max of 20, and total PIF can be as high as 1000 but have a max below 3. Max PIE is considered mostly fatal above 280 and can reach as high as 1664, and max PIF can reach as high as 208*.

DVD+R generally will maintain lower values for both due to superior error correction techniques.

* Some tools and/or drives won’t list above 4 for PIF.

** Some tools and/or drives also list PO (Parity Outer) uncorrectable errors. This is for any read that has a max PIF above 4. This indicates a mostly unrecoverable data corruption error, which would effect (if I’ve done my math right) 36k of data (although that doesn’t mean the whole 36k of data is corrupted, just that its corrupted inside of that 36k). This still does not indicate the disc is unreadable, some obsessive ripping tools will try multiple reads in an effort to get a valid read or different incorrect reads that can be merged into a valid read.

Update 6: (January 11th 2013) Taiyo Yuden announced last year that they are now producing an ISO/IEC10995 compliant archival grade gold alloy DVD-R. Sadly, its not DVD+R and I’m hoping they’ll consider making a DVD+R version as well. Not many vendors carry this disc yet.

Also, a few people have asked when I’m going to write that Bluray follow up article. I don’t think Bluray is viable for long term archival storage yet. I continue my recommendation that if you need to store hundreds of gigabytes of data or more, consider archival tape.

Written by
Open Source software architect and technologist. He's just this guy, you know? Follow him him on Google+.
Published in
Transmissions from the Little Blue Marble

Published October 30th, 2006

Comments

1,255 Responses

Thank you for such valuable information! Have you checked Verbatim’s M-Discs? It’s said they use an inorganic layer to engrave data, and that should make the disc good for hundreds of years.

Yeah, I looked into them. They never took off, and now the cost of other storage mediums have plummeted. Even uploading encrypted files to multiple backup services is cheap now. The world changed since I wrote this article.

Fantastic article. I was looking for the best solution for archival of my personal data which includes loads of images and videos and I came across this page. It was very interesting to go through all the information and the comments.

1-Why don’t you recommend Bluray? is it because of inferior design issue next to DVD+R or is it because its an un-necessary middle point between DVD+R and magnetic tape?

2-Why don’t you recommend slim drives for burning, and almost all external USB drive are slim. What can the thicker drives do more?

Bluray, over time, has not proven itself for stability purposes. DVD+Rs have already existed in archives for over a decade, and the rate of degradation is known, and is within specifications.

I don’t recommend slim drives because almost all of them are poor quality, and suffer from physical vibration issues (which affects both reading and writing).

Hi Patrick,
thanks for your response. Well, I ordered a batch of 100 DVD+R from http://www.taiyoyuden.co.uk/
and got, by mistake, DVD-Rs which were made by TY/Japan. When they sent me a right ones – DVD+R, these are made by CMCpro – http://www.microboards.com/category/blank-media/cmc-pro-media.

Checked with DVD Identifier:

Unique Disc Identifier : [DVD+R:YUDEN000-T03-000]
—————————————————————————-
Disc & Book Type : [DVD+R] – [DVD+R]
Manufacturer Name : [Taiyo Yuden Co. Ltd.]
Manufacturer ID : [YUDEN000]
Media Type ID : [T03]
Product Revision : [Not Specified]
Blank Disc Capacity : [2,295,104 Sectors = 4.70 GB (4.38 GiB)]
Recording Speeds : [1x-2.4x , 4x , 6x-8x , 6x-16x]
—————————————————————————-
** INFO : Drive = HL-DT-ST DVDRAM GU40N – [FW QX20] – [ATAPI]
** INFO : Write Capabilities = DVD+R DVD+R-DL DVD+RW
** INFO : Write Capabilities = DVD-R DVD-R-DL DVD-RW DVD-RAM
** INFO : Disc = [DVD+R:YUDEN000-T03-000]
** INFO : Reference Speed : 1x DVD = 1385 kBps
** INFO : An Writeable Disc Is Recommended For Accurate Results
** INFO : Write Speeds (Supported By This Drive On This Disc) Listed Below

and according to http://club.myce.com/f33/do-i-use-dvdinfo-find-if-my-ty-qenuine-178363/index2.html

TAIYOYUDEN 2x DVD-R (batch code: GBxxxxxx) Genuine Taiyo Yuden CD/DVD media
TYG01 4x DVD-R (batch code: GDxxxxxx)
TYG02 8x DVD-R (batch code: GGxxxxxx)
TYG03 16x DVD-R (batch code: GHxxxxxx)
TYG11 8x DVD-R DL (batch code: BGxxxxxx)
YUDEN000 T01 4x DVD+R (batch code: TCxxxxxx or TSxxxxxx)
YUDEN000 T02 8x DVD+R (batch code: TGxxxxxx)
YUDEN000 T03 16x DVD+R (batch code: THxxxxxx)

everything is in order.

According to website, they continue to produce JVC/TY CD/DVDs. Interestingly though, when calling about the wrong DVDs they sent me, I asked about stopping production and guy was surprised I knew that suggesting I must have an internal info. After explaining that such info can be found on TY website he assured me they’re well stocked up. Anyway, he also added they are (whether he meant JVC/TY or CMC?) pretty much ready to close down CD/DVD production with words “Better be sooner rather late”.

Have you come across them, does it mean CMCpro is now, or still producing JVC/TY media?

http://www.microboards.co.uk/blank-media/jvc-advanced-media/jvc-printable-dvdr-media claiming 100 years data integrity (marketing, I guess), where http://www.microboards.com/blank-media/cmc-pro-media/cmc-pro-dvd-plus-r-media estimates 50 years. I’ll stick with you, 20 – 30 years if properly stored. That brings me to second question; after gone through all 1245 responses (took me a week- few hours a day, wish I done it before), only one suggested oxygen starving environment when it comes to DVD archival storage. I would go even further and try to store them in vacuum, and of course with the right temperature. This way humidity perhaps wouldn’t play such a important role (if stored before burning right, burning itself done correctly and checked after).

Before I’m going to read all the reports on archiving&storage CD/DVDs found in the posts (I’m going to anyway), would like to ask. Do you think this could stabilize dye and stop decomposing process perhaps?
Wee bit on a sci-fi side here, I know, but hey….why not. After all …. anything outside of chiselling it on stone has come up short.

Thanks

I’ve heard of CMC Pro in the past, they seem to be a TY manufacturing partner. They also make their own media.

Oxygen starvation is a thing that some really high end archivists use to reduce long term oxidization. As in, they’re aiming for 100+ year storage using highly isolated storage rooms. This isn’t anything normal people like us will be doing. You can’t just vacuum pack discs and expect the seal to last more than a decade on current consumer equipment, and doing it wrong can damage the discs. Only high humidity, constant variances in humidity and temperature, and exposure to light, are the things usually relevant to long term disc storage.

Like, I just pulled out a few TY discs I burned a decade ago. I kept them in jewel cases in my closet in a non-sealed plastic box. My room stays in the high 60s or low 70s most of the time, humidity is usually 30-40%. VSO Inspector’s surface scan found no problems with the discs.

Thanks very much for sharing this information. After searching for answers in similar subject I came across this site and by far, it gives the most comprehensive and satisfactory explanation. Backed by technical data and technological knowledge it provides valuable insight in to the matter.
Would like to ask, when it comes to finding a suitable media for archival and storage of data, pictures, movies and what have you, then creating this medium is in an equal importance. So far I wasn’t able to find more info other than that the burning speed should be the slowest possible to prevent errors during the process. Is there any burning program you would recommend or you have a good experience with? What role plays a CD/DVD drive in all this?

Thanks.

I don’t recommend burning at the slowest speed, as that can damage disc media. I recommend burning at the second fastest speed of whichever is slowest between the disc and the drive. Examples: 6x disc, 8x drive, burn at 4x; 10x disc, 8x drive, burn at 6x; 8x disc, 8x drive, burn at 6x.

A shoddy burner will produce burns that won’t last as long. Samsung still makes the burner I recommended long ago, but it is now called the SH-224G. I continue not to recommend slim drives for archival burning.

Very interesting read. My ‘consumer’ hard drive from 2005 quit in 2015. A decade of heavy day to day use isn’t bad by hard drive considerations. I’ve toyed with DVD and CD media since 2001 and have had my share of let downs yes, but if optical media could last 3+ decades (all factors considered), I’ll likely keep using DVD to backup my RAID. Thanks again for all the insight, and recommendations.

Thanks for the good reference

For anyone interested:

“Tokyo, June 11, 2015. TAIYO YUDEN CO., LTD. (“the Company”) announces that it will discontinue the recording media business.”

All production of said media was set to cease December 2015.

Please refer to original news release for details.

http://www.t-yuden.com/news/Pid=192_detail.html

Some retailers have reportedly stocked up and anticipate supplies may last to mid 2016.

Yup, unfortunately, recordable disc media is basically dead now because of this.

Buy TY media while you still can and stockpile it if you absolutely need to use this in the future.

I don’t really care for CDs as archival due to only having a single polycarbonate layer, and several times more surface area for oxidation to sneak in and ruin your data. DVDs have an extremely thin layer around the edge, and is generally sealed much better.

A single scratch on the top of a CD (not the bottom) can ruin the entire CD.

Thank you for the read Patrick. I would like to ask you though if today, 2 years after your last update, would you still not consider the Blu-Ray disks for archival storage?

For most people, 25GB and 50GB discs are just too small, and using LTO tape (LTO-6 tapes are 2.5TB, and tapes up to 48TB are supposed to come out in the next 2-3 years), external enterprise grade hard drives, and/or using a high bandwidth Internet connection and backing up off site (or live syncing changes for high availability systems) are what I recommend nowadays.

Taiyo Yuden is also getting out of the burnable disc market, so the only manufacturer I recommend for discs is soon going to leave everybody with no discs to buy.

But yeah, from what I can tell based on other people’s experiences (without having done accelerated aging tests myself), TY’s Bluray discs are of sufficient quality.

Thanks for this article! I knew the basics of this already, but it was great to have it all laid out with technical details and I definitely learned some pieces I hadn’t known before.

Speaking as a gamer and movie fan, I have a huge multi TB library to backup. Storing them all on DVDs is a huge pain. Could you write a discussion of archival tape and how to use it / if it’s practical for consumers to use? I really, really don’t have the literal person-months it would take to burn everything important to DVDs.

If you could add the reasons you’re skeptical of Mdisc, that would also be very interesting. It is a new technology, but from what I understand the change in the burning layer material should logically extend shelf life, and the DOD tests seemed convincing. I’d love to hear from someone who has the knowledge to pull apart their claims and point out holes so I can make a more informed decision.

When I originally wrote this article, large scale better systems didn’t exist. It is now easy to do live duplication of data for large libraries; as in, changes are instantly synced offsite to an active archive that can immediately take over in the case of on-site failure, a “cloud”; in addition, archival-grade (write rarely, read rarely) 10+ TB hard drives, which you can just make multiple offsite copies and sync them periodically in addition to a cloud storage system.

I consult for businesses that use many different types of various live duplication systems, some described as clouds, some not; some built into their various databases or leveraging them, some not. For a large library this is your best bet, but since I don’t know what your library is, it also might be just massive overkill.

Since disc media in general is somewhat dying (I give it another 5-10 years before people forget what discs are altogether, like how floppies have already passed into history), using multiple hard drives from multiple manufacturers, stored in multiple offsite locations, is the only suitable backup methodology that live syncing in storage clouds would just be overkill for.

Thank you for your thorough explainations of the technologies and the differences in media. I don’t know if you are aware or not but, in the video industry, it is widely known that DVD+R discs are and have been very problematic for many years therefore videographers and video producers have made a practice of using DVD-R media for delivery of finished productions to clients. As such, this is a direct contradiction to your findings. Are you aware of this and do you have anything to share as to the reason it would be such a contradiction? Thank you kindly.

I have no clue why the industry would think that. The only reason to use DVD-R I have ever seen is some players (incorrectly) try to stop DVD+Rs from playing; usually swapping it out for a different player fixes the problem (or just not buying the cheapest DVD and Bluray players you can find: better ones don’t arbitrarily ban disc formats to participate in the war on piracy (which piracy largely doesn’t exist to begin with).

Leave a Reply to John