How To Choose CD/DVD Archival Media

(Last updated January 11th 2013)

Translations: Serbo-Croatian by Jovana Milutinovich

Ahh, I’ve been planning to write this one for awhile: an entire article on archival quality media. As I do professional software development as well as professional photography (what a weird combination), I need archival quality CD and DVD media to store my data on.

However, one of the hardest things to is actually find good media, or even understand why it is good media. This article focuses on the history of Compact Discs, writable CD/DVD media, and why DVD+R is superior to DVD-R. If you want to just know what media is worth buying, skip to the summary at the bottom.

Short history of the Compact Disc
The invention of the Compact Disc has had a large impact on both music and computing in the last 20 years. Invented in 1979 as a joint project between Sony and Philips to counter the self-destructive nature of consumer audio playback (such as tapes and records that could only be played so many times before the recording degraded significantly) by switching to a resilient digital format.

The CD was also designed to store standard computer data, as in 1985 the first CD drives for computers were released; massive, bulky, and expensive, it was not until the mid-90s that they really took off, driven almost solely by video games and large multimedia applications.

In 1990, Sony and Philips went back to the drawing table, and then came out with the CD-R, a record-once medium. Yet again, the first CD burners were large, expensive, and bulky, but by the late 90s having a CD burner was the new ‘in’.

The first few generations of CD media, designed by Taiyo Yuden (a company who I respect, and buy all my archival quality media from), actually kind of sucked; it wasn’t until around 2000 that companies started producing very high end media.

CDs and DVDs store individual bits (encoded in various ways depending on the media) with spots of reflective and non-reflective areas. This method is called ‘pits and lands’, where pits ‘absorb’ light (ie, are ‘off’ bits) and lands ‘reflect’ light (ie, are ‘on’ bits).

With pressed media, the pressing method causes pits to reflect the laser’s light away from the sensor, and the lands to reflect it back at the sensor. With burned media, a high energy laser causes spots of organic dye to go opaque and obscure the reflective surface for the pits, leaving the organic dye for lands alone.

Short history of the DVD
While burning was becoming popular in the late 90s, so was playing high quality video on DVDs. Storing almost 7 times the data of a 700MB CD (or almost 13 in the case of dual layer DVDs), allowed companies to store massive amounts of data on one disc, leading to the movie industry to drop VHS tapes and the video game industry to drop CDs.

In 1995, the first DVD specification was ratified by over a dozen companies including Sony and Philips, as well as Thompson, Pioneer, and Mitsubishi. By 2000, at least half the homes in the US and Japan had DVD players.

So, obviously, the next step was to produce burnable DVDs. Two separate, and incompatible, efforts took hold. The first one, Pioneer’s DVD-R (pronounced ‘DVD dash R’) was released in 1997, using different data storage methods than pressed DVDs (appearing to be more like CD-R than DVD), a poor error correction scheme, and the ‘wobble’ laser tracking system of DVD-R is inadequate for the job.

The second effort, lead by the DVD+RW Alliance (headed by Sony, Philips, Mitsubishi, and Thompson) was released in 2002, as an alternative to the poorly implemented DVD-R. DVD+R uses a superior ‘wobble’ laser tracking system, a far better error correction method, and the media quality itself is typically higher. (See the ‘Why DVD+R?’ section below for a more technical explanation)

Why archival media is hard to produce
Unlike pressed CDs/DVDs, ‘burnt’ CDs/DVDs can eventually ‘fade’, due to five things that effect the quality of CD media: Sealing method, reflective layer, organic dye makeup, where it was manufactured, and your storage practices (please keep all media out of direct sunlight, in a nice cool dry dark place, in acid-free plastic containers; this will triple the lifetime of any media).

The silver and aluminum alloys used in virtually all blank CD/DVD media has one major issue, requiring the manufacturer to lacquer a protective seal over the entire disc: silver and aluminum oxidize when they hit air, turning the normally reflective layer into silver or aluminum rust. Some (very expensive) media uses gold instead which doesn’t oxidize, however DVD media cannot use gold due to design issues (not true anymore, see update 1 below). Today, only the cheapest of the cheap media has severe issues with sealing practices (as such, avoid any media made outside of Japan and Taiwan; especially avoid media made in India).

Assuming that the protective seal and reflective layer are manufactured correctly, the next issue is the organic dye. The first organic dyes, designed by Taiyo Yuden, were Cyanine-based and, under normal conditions, had a shelf life of around ten years; simply, that was simply unacceptable for archive discs. Taiyo Yuden, Mitsubishi Chemicals, Mitsui Co., and Ciba Specialty Chemicals spent the next ten years trying to produce the best organic dyes, eventually reaching archive-quality CD media.

Taiyo Yuden produced ‘Super Cyanine’, a chemically stabilized version of the original Cyanine dye designs, while TDK offers media that uses ‘metal-stabilized Cyanine’ dye, leading to similar shelf lives as Taiyo Yuden’s media. Taiyo Yuden states their Super Cyanine dye is chemically stable for at least 70 years, and TDK states their metal-stabilized Cyanine is also stable for 70 years.

On the other hand, Mitsubishi went in a different direction and produced what is called a Metal Azo dye, that they claim is stable for around 100 years. Azo dyes are chemically stable, however, the shelf life of media using Azo dyes typically does not exceed that of Super Cyanine and metal-stabilized Cyanine.

The third dye produced for CD media is called Phthalocyanine dye, with the majority of such dyes produced by Mitsui and Ciba. Typically marketed as more resistant to heat and UV radiation than Cyanine and Azo, modern Cyanine and Azo dyes last just as long in extreme conditions.

DVDs also use similar dyes, however manufacturers have intentionally kept what dyes they use a secret (instead of a feature in their marketing of the media), and all blank DVDs are intentionally the same color (as different dyes on CDs make blanks different colors, however, it is not indicative of what dye is used due to some manufacturers using different colored silver alloys and non-reactive additives in the dye).

Why Taiyo Yuden media, and how to buy in the US
The best discs in circulation tend to be Taiyo Yuden media. In Japan, you find their media under the brand That’s, which are wholly owned by Taiyo Yuden.

As of late 2009, Taiyo Yuden announced they were buying the JVC Advanced Media brand, and making it a wholly owned and operated brand for TY products. They did this to put Taiyo Yuden products on store shelves worldwide. See update 4 at the bottom for a full explanation.

Simply put, I have never had problems with any kind of Taiyo Yuden media. Ever. I have bought CDs and DVDs under a dozen different brands (including non-Taiyo Yuden manufactured TDK and Verbatim), and the only ones that have had a 100% success rate is Taiyo Yuden.

If you cannot find any company selling media under the Taiyo Yuden/JVC Advanced Media brand, I suggest buying from the SuperMediaStore.com, who offer a wide range of Taiyo Yuden CD media, DVD-R media, and DVD+R media. I tend to buy just from them, as they are the only company that guarantees that their media is actually from Taiyo Yuden and not a fake (see the above linked FAQ on information about fake Taiyo Yuden media).

Why DVD+R?
This is the most technical section of the article. If you don’t understand the basics of how CD/DVD media works, or find such technical discussions boring, skip to the next section.

As I said earlier, DVD-R sucks for data preservation for three reasons: inferior error correction, inferior ‘wobble’ tracking, and the fact its data writing methods look like an un-needed halfway point between CD-R and DVD+R. The wobble tracking I shall explain first, then the error corrections method, then the specifics of ATIP/pre-pit/ADIP optimum power settings.

For a CD/DVD burner to track where it is on the disc, it uses three things: the ‘wobble’ of the data track (where it actually wobbles back and forth instead of in a straight line) to tell where it is in the track, the position of the track to tell where it is on the disc, and some additional information on the disc to tell where the track (singular, as CDs and DVDs only have one track, and it is written in a concentric spiral) begins and ends.

This additional information on a CD-R is called the ATIP (Absolute Time In Pregroove), which contains how long the track is, where it begins, what the maximum and minimum writing speeds are, what formula dye it uses, who actually made it, optimum power control settings, and error correction data. The ATIP is stored as a frequency modulation in the wobble itself.

However, since the wobble changes subtly to encode data, it is impossible to use with the small size of tracks DVD requires, as electric noise in the laser pickup and wobbles introduced by the electric motor spinning the disc, these could easily be read as frequency changes in the real track itself.

On DVD-R, they tried to solve the problem with something called ‘pre-pits’ where spikes in the amplitude of the wobble appear due to pits fully out of phase with the rest of the track (ie, between two spirals of the track, where there is no data). This can be viewed as a simple improvement over CD-R as it makes it easier to track the wobble (since the wobble is constant except for the easy to detect and remove spikes).

Unfortunately, this method as one flaw: due to electric noise in the laser pickup, it would be very easy to miss the pre-pit (or read one that wasn’t actually there) if the disc were damaged or spun at fast speeds. The time to read a pre-pit is 1T (roughly .0000000038th of a second), which even for a computer can be easy to miss. DVD-R traded hard to track frequency changes for hard to read wobble-encoded data.

On a DVD+R, however, they came up with a much better method. Instead of changing the frequency of the wobble, or causing amplitude spikes in the wobble, they use complete phase changes. Where CD-R’s and DVD-R’s methods make you choose between either easy wobble tracking or easy ATIP reading, DVD+R’s method makes it very easy to track the wobble, and also very easy to encode data into the wobble. DVD+R’s method is called ADIP (ADdress In Pre-groove), which uses a phase change method.

With ADIPs’ phase changes, the direction of the wobble changes and continues on going in the exact opposite direction (ie, counter-clockwise to clockwise, or the reverse). For example, if the wobble was ‘going up’, the phase change causes it to instantly reverse direction start ‘going down’ no matter where it in the wobble cycle. The phase change is very easy to detect, and also continues for a set period (in this case, one 32T section of the track, or 32 times longer than the pre-pit method of DVD-R).

The state of the phase change (clockwise or counter-clockwise) encodes the individual bits in each block In essence, with the phase change method, not only do you have an easy way of tracking the wobble, but you now have an easy way of reading wobble-encoded data.

As I mentioned earlier, this wobble-encoded data includes error correction of wobble-encoded data itself. Error correction is the most important part of media, because if it does not work, then you’ve lost your data, even if there is nothing seriously wrong with the disc.

The DVD-R specification states that for every 192 bits, 64 of them are not protected under any scheme, 24 of them are protected by 24 bits of parity, and the last 56 bits are protected by another 24 bits of parity. This weird (to put it mildly) scheme allows you to easily scramble or lose 25% of the data that is required to read your disk! This information is almost more important than the actual data burned on the disc itself.

The DVD+R specification, however, states that for every 204 bits of information, it is split into four blocks of 52 bits containing 1 sync bit to prevent misreading because of phase changes, 31 bits of data, and a 20 bit parity (that protects all 32 bits of data). The sync bit is always the same value in all four blocks, and exists only to prevent phase inversions.

Now, the third item on the list: how DVD+R discs burn better. As I said earlier, ATIP/pre-pit/ADIP stores information about optimum power control settings. This information is basically formulas stating how much output power is needed, what the laser startup power should be, and other pieces of information you require to properly burn a DVD.

Optimum power control output is dependent on three things: burning speed, laser wavelength, and information given to the drive about the media. DVD-R basically fails on all three accounts because DVD+R simply includes far more information about the media in the ADIP data than DVD-R does in it’s pre-pit data.

DVD+R includes four optimum profiles, one for four major burning speeds (usually 2x, 4x, 6x, and 8x, though this can change as speeds increase). Each of these profiles include optimum power output based on laser wavelength, more precise laser power settings, and other additional information. With this information, any DVD+R burner can far more optimize it’s burning strategy to fit the media than it can with DVD-R, consistently providing better burns.

For comparison, DVD-R includes one profile, optimum power output based for that one profile only and uncalibrated towards what wavelength it is for, less precise laser power settings, and no other additional information. Typically, DVD-R burners have to already know how to burn a certain piece of media (and include this information in their firmwares) before they can properly burn to it. New media often is not properly supported.

In addition to the optimum power control profiles, DVD+R also gives four times more scratch space for the drive to calibrate the laser on; more space can only improve the calibration quality. So, in short, DVD+R media exists to simply produce better burns and protect your data better.

And finally, the end of the article…
Finally, after roughly three pages of technical discussion, we arrive at the end of my dissertation on archival quality CD/DVD media. So, you’re probably now wondering, in simple terms, what media do I recommend?

To begin with, I do not recommend CD-RW, DVD-RW, or DVD+RW media in any form for permanent storage. This is mostly a no-brainer, but those discs are meant to be able to be changed after burning, and they are simply unsuitable for long-term archival storage. I also do not recommend DVD-R media due to DVD+R’s superior error correction and burning control.

That said, I recommend Taiyo Yuden media across the board. Taiyo Yuden currently manufactures 52x CD-R, 16x DVD-R, and 16x DVD+R media in normal shiney silver, inkjet printable, and thermal printable forms. Taiyo Yuden may be one of the most expensive (if not the most expensive), but their media quality is unsurpassed. Also, as I mentioned earlier, I recommended buying from SuperMediaStore.com as they are the only online US distributor that guarantees that their Taiyo Yuden media is certified as coming from Taiyo Yuden.

So, what am I using? Due to Taiyo Yuden’s superior media quality, and DVD+R’s superior design, I use only Taiyo Yuden DVD+R media. I recommend this media to everyone who wishes to keep their data for a long, long time.

Update 1: It seems MAM-A and Kodak actually has managed to make a gold DVD, though no one else seems to be manufacturing them (Taiyo Yuden/JVC Advanced Media now makes an archival gold disc, see update 6). However, MAM-A’s gold archival media still doesn’t seem to exceed TY quality (although Mr 60,000 in the comments below puts TY second best to MAM-A). Due to the extreme cost of gold archival media ($2+ a disc) with very little increased protection (if any), I’ll still say TY media is better. I want to see more independent tests on this before I change my recommendation.

In addition, I’d like to mention that Verbatim has been relabeling other brands of disc as their own. If the box/spindle/cakebox the discs come in don’t say they’re manufactured with Verbatim’s proprietary Azo dye (sometimes called Advanced Azo, sometimes not, depending on the product) then they aren’t Verbatim media at all and should be avoided as they may not meet typical home archival standards.

Update 2: (Sept. 19th 2007) Its almost been a year since I first wrote this article. My recommendations for media have not changed, my recommendations for DVD burners have.

Samsung: Samsung is currently producing two drives worth owning, the
Samsung SH-S222AB
(SATA). They’re not considered archival grade, but they’re not bad.

TEAC: TEAC makes an archival drive that is ISO/IEC10995 compliant, and is very expensive. Comes in two forms, external USB DV-W5000U and internal SATA DV-W5000S. I’ve seen DV-W5000U drives for sale for $500, and refurbished DV-W5000S drives for $150-200. This is the elite of drives, and recommended if you’re very serious about 30+ year archival storage.

Update 3: (July 26th 2009) Its been awhile since I updated this article. Pioneer is no longer manufacturing drives worth using. Just buy a Samsung or TEAC drive like I link to above. I’m using two Samsung drives now after my PX-716 finally died after years of service.

My recommendation on TY and Verbatim hasn’t changed, and I imagine it will never change; DVD media will not change significantly from here on out. Bluray in my opinion is not worth switching over to unless you’re storing data that can be measured in hundreds of gigabytes, and at that point you might want to look into archival tape storage.

When Bluray is worth switching over to, I’ll write a follow up article to this one. High quality single layer media will have to drop below 50 cents a piece and Bluray burners will have to become ubiquitous (much like DVD burners are now) before that happens. I’m thinking 2011 or later.

Update 4: (August 3rd 2010) Taiyo Yuden has bought the JVC Media brand and is now operating under the JVC Advanced Media brand. You can now buy TY inside JVC boxes and get your usual TY quality. This site has the conversion of part numbers.

JVC has not bought Taiyo Yuden, and Taiyo Yuden is in full control of this new venture. They merely bought they name so they can put TY products on store shelves worldwide.

SuperMediaStore.com is selling almost all JVC Advanced Media branded TY products in place of the old TY branded ones.

Update 5: (September 27th 2011) A few people have asked about how PIE/PIF scans work.

DVD-R and DVD+R both employ two stage error correction.

PIE (Parity Inner Error) just means error correction was used, PIF (Parity Inner Failure) means the error was unrecoverable using the inner ECC block but still may be recovered using the outer ECC block . On tools that give avg/max/total, max PIE values above 140, or max PIF values above 4* means the disc needs to be replaced but the data most likely isn’t corrupted yet**.

For a burn to be considered still pristine you want max PIE below 20 and max PIF 3 or lower.

Discs will NOT be pristine after 5 years, but there is a fall off of PIF/PIE increasing after 6 months and doesn’t seem to start picking up again until 5-10 years depending on storage environment.

Totals for PIF can be as high as 100k yet have a max of 20, and total PIF can be as high as 1000 but have a max below 3. Max PIE is considered mostly fatal above 280 and can reach as high as 1664, and max PIF can reach as high as 208*.

DVD+R generally will maintain lower values for both due to superior error correction techniques.

* Some tools and/or drives won’t list above 4 for PIF.

** Some tools and/or drives also list PO (Parity Outer) uncorrectable errors. This is for any read that has a max PIF above 4. This indicates a mostly unrecoverable data corruption error, which would effect (if I’ve done my math right) 36k of data (although that doesn’t mean the whole 36k of data is corrupted, just that its corrupted inside of that 36k). This still does not indicate the disc is unreadable, some obsessive ripping tools will try multiple reads in an effort to get a valid read or different incorrect reads that can be merged into a valid read.

Update 6: (January 11th 2013) Taiyo Yuden announced last year that they are now producing an ISO/IEC10995 compliant archival grade gold alloy DVD-R. Sadly, its not DVD+R and I’m hoping they’ll consider making a DVD+R version as well. Not many vendors carry this disc yet.

Also, a few people have asked when I’m going to write that Bluray follow up article. I don’t think Bluray is viable for long term archival storage yet. I continue my recommendation that if you need to store hundreds of gigabytes of data or more, consider archival tape.

Written by
Open Source software architect and technologist. He's just this guy, you know? Follow him him on Google+.
Published in
Transmissions from the Little Blue Marble

Published October 30th, 2006

Comments

1,255 Responses

No. 48 Posting: Neil (12/11/06 8:11 pm), referred to an NIST Stability Study link. It was wrong. Correct one follows.

Wrong URL: http://www.itl.nist.gov/div895/gipwog/StabilityStudy.pdf

Correct URL:
http://www.itl.nist.gov/iad/894.05/docs/StabilityStudy.pdf

Most excellent article. Thanks so very much for taking the time.

Bruce Cooper

Thanks so much for the information here. So informative and comprehensive. I just ordered the samsung sata drive and some Taiyo DVD+R media. Thanks again.

I’d have to sit down and evaluate them, which would take a very long time. This article is partially based on my own personal experiences, experiences of others who archive on hundreds of discs, and the experiences of large scale scientific tests.

You probably can’t go wrong with Verbatim’s gold DVDs if you do actually buy them, but don’t expect them to outperform their standard DVDs by a large margin; this, of course, applies to all gold DVDs.

Verbatim and others have announced gold archival dvd’s since your excellent article. Do you have time for another supplement?

DVD-RAM and DVD+/-R are two completely different kinds of media. DVD-RAM is also unrelated to DVD+/-RW as well.

If you’re archiving data for long term storage, DVD-RAM isn’t the answer.

If you’re looking for DVD media you can treat like a hard drive, DVD-RAM is the only answer.

I have a question: How does DVD-RAM compare to DVD+/-R?

Prese Arrampicata

I used to have a list of studies, but I’m not sure where it went. In the comments, some people have linked to various studies , including I believe the one the Library of Congress produced.

They all pretty much say “Use Gold CDs and DVDs, and store them in the dark at x temperature and humidity” without taking into account that Gold media just doesn’t have a higher archival rate than TY or Verbatim discs.

The studies, for example, don’t take into account duplicate discs burned from two different batches of media (ie, one TY, one Verbatim) will last far longer than any single disc of any kind; even in the case of bitrot, the chances of both discs having rot in the same place are low unless both discs are heavily rotted.

And I don’t need to mention one TY + one Verbatim is still cheaper than one Gold DVD of any brand.

Hi Patrick,

in one of your posts, you mentioned “I think it was one of the big archival studies”

My bachelor diploma work I’m writing right now is handling a topic pretty close to this one. That’s why I was wondering whether you could publish sources you described as “big archival studies” (in case you still have an easy access to your sources list)

I’ve been and I still am googling a lot, just want to make myself sure I didn’t miss any important sources.

Sofar what I got and consider to be a big archival study is Fred Byers “Care and Handling of CDs and DVDs” and Unesco’s “Risks Associated with the Use of Recordable CDs and DVDs as
Reliable Storage Media in Archival Collections”

Thanks

No, sorry, I don’t know of anyone in South Africa who sells them.

Wow, i have always wondered what is the difference between all these discs and you have beautifully explained to me what nobody ever could. Thank you. Do you know where i can buy TY discs in South Africa?

I actually recommend CDBurner XP, not only is it free, it has never caused me problems… although, I will admit I rarely burn in Windows, and all burning programs in Linux use the same underlying mechanism.

As for spanning archives: DO NOT DO THIS. If you loose one disc, the other 9 are useless. The only reason you should do this if you have a single file that exceeds 9 gigs, and you need to split it across media…. and then you should only do it for that file.

I forgot to ask but is there a recommended software that is a bit more thorough and robust when it comes to archiving? I’m presently using the Roxio software that came with my HP workstation. Also to archive 30Gigs of data is there a drawback to doing one continous archive spanning 10 discs compared to 10 discrete self contained discs when it comes to reinstallation?

TIA,
Tom McDonnell

As far as I know, TY doesn’t make DL media, but that may have changed since the last time I looked; that, and DL media costs more than 2x per disc than SL media does.

So yeah, I really do recommend TY and Verbatim discs if you’re not willing to step up to much more expensive solutions. For 90% of people, its the correct solution.

Now, some people have mentioned, to decrease the likelyhood of one batch of media wiping you out, use both TY and Verbatim media, and either burn data on both, or just switch back and forth.

I don’t necessarily agree with that, but hey.

Patrick your article and follow up posts are excellent.

So in the grand scheme of things archiving to DVD+R/DL TY or Mitsubishi (Verbatim) media sounds like the best place to start? I really need LTO for my amount of data but I can’t afford a LTO drive presently. I’m skipping Blu-Ray as I don’t want to invest in another optical format. I will move to LTO when money permits.

Patrick thank you very much for your helpful insight.

Because its really retarded behavior. It conflicts with at least two major device design rules.

Thanks for the helpful responses.

(a) Of course my DVD player is “not the usual case” *today*. But can you or anyone else guarantee that it won’t be the usual case in 25 years?

z) Drives can’t tell the difference between DVD-R, DVD+R, and DVD-ROM in the most basic sense. But yes, with a DVD+R with the booktype set, most DVD players just fail at telling the difference.

a) I don’t like your DVD player. It sounds like it has two different personalities. Its obviously not the usual case.

b) Not that I know of; you might not be able to burn more sessions, but I don’t use sessions so I’ve never tried. I’ve never heard of a DVD drive that refuses booktype-set DVD+Rs.

c) Won’t happen. The industry has intentionally required all previous standards to be implemented to prevent data being lost.

ie, the DVD specification requires CDs to be able to be read, the Bluray and HD-DVD specification requires DVDs to able to be read (which in turn also requires CDs), and so forth.

Pressed DVDs will be able to be read 50 years from now; and I don’t think burned CDs will actually last that long. Verbatim and TY both say 100, I say 25, 50 at the most.

d) I can’t give you an exact figure, but last time I heard its half and half.

(z)Okay so from a reading point of view, DVD+R is the same as a pressed DVD (except at the optical signal strength level) but DVD-R isn’t, right?

(a) As for my home DVD player, it *does* play DVD+R videos, just not JPEG or MP3 on DVD+R. Manual also doesn’t say whether or not it will read MP3 or JPEG files on DVD-ROM! So if it has specially implemented this capability only for DVD-R then this explains it. If it worked for DVD-ROM then it should work for DVD+R unless it specifically refused to do so based on book type.

(b)When burning DVD+R, is there any downside or risk at all to bitsetting the booktype to DVD-ROM?

(c)Here’s another possible future scenario: at some point pressed DVDs might no longer be manufactured because the industry moves on to some newer pre-recorded format, *BUT* recordable DVDs (perhaps only DVD-R because DVD+R media might have fallen out of fashion years earlier) might continue to be used for many more years because the newer format isn’t so good for burning. So after awhile drive manufacturers don’t bother supporting pressed DVDs anymore at all, but they might still support DVD-R specifically. Then these drives will read DVD-R but not DVD+R, regardless of book type.

How likely is this scenario? I’m not sure, but it shows that a DVD-R *might* be more likely to be readable at some point in the future than a DVD+R. The only scenario I can think of in which the opposite might be true, would be if DVD-R media disappears in favor of DVD+R media, in which case DVD-R is unreadable even if drives do continue to read both pressed and +R DVDs. But I believe that this scenario must be much less likely, because of the present stronger commitment from more manufacturers (including most of the major DVD+R supporters) for DVD-R.

(d)Does anybody have recent sales figures on DVD+R vs DVD-R media?

Bill Carter: I have not heard any problems with newer Macbook drives, but I can’t answer you with older Powerbook drives.

Buy a single DVD+R from your local stores and try it and find out.

1) Probably not. Look at CDs, they have been manufactured since the late 70s, and even the newest Bluray and HD-DVD drives can read them.

2) Because the drives usually can’t tell the difference between a +R with booktype properly set and a commercially pressed DVD-ROM. Many stand alone players are quite broken in how they prevent piracy.

As for why? Because a lot of small time “Hong Kong style” street vending pirates don’t press DVDs but burn them.

3) Bingo.

Also, it sounds like your DVD model just sucks. If it can’t read DVD+R “Movie DVDs” either, then it can’t read DVD+R at all… if it can, they’ve admitted the software in the player isn’t checking properly.

Computer discs drives in an actual computer will never have this problem.. can you imagine the class action suites if such a thing happened?

I just read the manual for my standalone home DVD player (Panasonic dvd-s52 — a pretty recent model). It specifically says it can’t read/play MP3, JPEG, and MPEG4/ASF files on DVD+R discs, but rather only when they’re on DVD-R.

Surely this isn’t a piracy issue — they simply haven’t bothered to implement this DVD+R support. I’ll bet this restriction almost never occurs in the opposite direction (supporting +R but not -R), for whatever historical/business/political reasons.

Who can guarantee that this won’t happen with more devices in the future, such as computer dvd drives? Then we’d be left high and dry if our archival data were on DVD+R.

Thanks, your reply does clarify a couple of things.

But (1) isn’t it possible that future drives (or players) might not have the necessary firmware (however simple a capability it might be to add) to read +R or -R if that type of media has not been manufactured in decades? Or does the firmware not need any special capability at all to read +R vs. -R?

2) Also when you say “anti-pirate”, why would a player bother to implement the capability to read +R at all, only to then refuse to do so because it’s book type does indeed identify it as +R? And why wouldn’t it also refuse to read a -R for the same anti-pirate reasons?

3) Or is DVD+R format (let’s say with DVD-ROM book type for arguments sake) completely “indistinguishable” from DVD-ROM as far as the firmware/software of the device reading it is concerned, assuming that the hardware is capable of reading the data?

Hello Patrick,

As a photographer I am very grateful for your informative website. I keep a lot of archival stuff on the new Lacie external hard drives, but would also like to back up these files onto the latest DVD+R media as recommended by you on your site.

I would use an internal superdrive on a Macintosh PowerBook for this purpose. As far as you know are there any burning problems with these drives using DVD+R media? Thanks.

Leave a Reply to Kris